
MMKCCHROOPPRROOEEESSSSOORR AANNIB

CCOOMMPPUUTTEERR AAPRCCHHHTTEEETTUURREE

UNIT - 5

advances in architecture

feedback1correctionsi.vibha@pesu.pes.edu VIBHA MASTI

ADVANCED ARCHITECTURE

• M1 system on chip , ARM CRISC) architecture
,
levels of cache

° Cache levels exist even for SOC

• 8 cores
,

8 GPUs on chip

• Multicore
, multiprocessing , parallel computing

High Performance Computing

• Efficient algorithms on computers
• capable of highest performance
• To solve most demanding problems

D Higher speed
2) Higher Throughput
3) High Computational Power

Quantifying Capability to solve Problem

•

Floating Point Operations Per second

Timeline OF growth
Blue Gene

multicore
,

multiple
processors

smaller units of

data
,multiple
processors

multiple
hardware

pipelining ,
cache levels

Moore 's law

° No . of transistors/ chip doubles every 2 years
• lost of computer halved

processing powerEQUATION
in beginning year
f

Pn = Po ✗ 2^7 number of years
¢ to develop a new

processing power microprocessor divided

in future years by 2 (no. of 2-years)

In 1988, the number of transistors in the Intel
386 SX microprocessor was 275,000. What were
the transistors counts of the Pentium II Intel
microprocessor in 1997?

Q :

n = 1997-1988 = 9g
2

Po = 275000

Pn = 275000 × 2*5 = 6222539
= 6.2 million

Growth 4 Change in trend

}
Denard scaling :
as transistors

get smaller,
power density
stays constant

Shift to Parallel Processing

D Memory Wall Challenge

° Gap between processor and memory performances
• Gap increasing
•

Memory latency and bandwidth insufficient ; acts as bottleneck

• Processors stall

2) Power Wall Challenge

• Power delivery and dissipation
• Difficulty in scaling performance of chips and systems
• Faster computers get very hot

AMDAHL'S LAW
*

speedup = 1

(I - f) + f-
s

5- speedup factor

f- = fraction of program that can be optimised

1- f = fraction of program that cannot be optimised

*
more on page 39

Parallel computing

° Multiple CPUs for single program

•

Von Neumann Architecture

• Sequence of instructions stored in memory
• Executed sequentially
° Stored-program concept : sequence of read-write operations on

memory
• Data and instructions both stored in a single memory

Harvard Architecture

• Separate storage and buses for instructions and data (modern)

• Can fetch and load/ store at the same time (pipelining)

shift to parallel computing

1. Bit - level Parallelism

• 8-bit processor to add 16-bit numbers

2. Instruction - Level Parallelism

•

Pipelining (different stages)

3. Loop -Level Parallelism
• No dependency split across cores

• Loop unrolling for dependency

• Eg: for Li =L ; i c- 1000; + ti) {
✗ Ci] = ✗ [i] -1 yci];

}

load KCO]

load yco] } 1000 times

add ✗COT
, yco] I stall

store xco]

IF * ID H IE * ME # WB

IF * ID H IE * ME # WB
t

* IF HID * IE * ME # WB

IF * ID H IE f> ME # WB

loop unrolling
^ load KCO]

load yco]
reschedule add ✗COT

, yco]

store xco]

load KCI]

load ya]
add XCIT

, ya]
v store xcl]

4. Thread- Level Parallelism
• fine-grained thread § coarse-grained thread

core

- execution state of program (Reg , PC , stack pointer)
- interrupt logic
- execution units

- cache

- single threaded processor

CPU State

Interrupt Logic

Execution
Cache

Units

Multicore
- multiple cores on single die / chip
-

Chip multiprocessor CCMP)

- thread level Eg task level parallelism
- each core independently executes a task Cor thread)

-

cores can share resources

- multithreading and multiprocessing supported

CPU State
,

CPU State
"

=ntIptgiExecution
cache

! Execution
cache

Units 1 Units
I

Hyperthreading
- simultaneous multithreading CSMT)

- thread defined by architecture state (interrupt logic, reap
- shared execution units and cache

- Intel

CPU State CPU State

IptgiitExecution
cache

Units

- Amdahl 's law for HT

speedup = 1

St (t - s) + Hcn)

0.67h

(a) Fine - Grained Thread
• different parts of program run paralleling
•

programmers explicitly specify parts of program to run

parallely
o hardware extracts parallelism and dynamically schedules

• compiler dynamically schedules

(b) Coarse - Grained Threads
° OS responsible for scheduling tasks on different cores

5. Task- Level Parallelism
• 0s or programmer
•

processes , tasks , jobs

CLASSIFICATION of PARALLEL COMPUTERS

• Flynn 's Taxonomy of computer Architecture
• Two independent dimensions : instructions and data

single data multiple data
stream stream

single
instruction

multiple
instruction

4) SISD : single Instruction , Single Data

• single instruction : only one instruction stream being accessed

by CPU during single clock cycle

• single data : only one data stream being accessed by CPU

during single clock cycle

• Deterministic

• Intel Atom Family (Silverthorne , Lincroft , Diamond Ville ,
Pineview) rarely found

• Older ; sequential execution

[
instruction

cache

data
→

cache

(2) SIMD : single Instruction, Multiple Data

° Specialised problems with high degree of regularity leg:
image processing?

• Two varieties : processor arrays g vector pipelines

• Processor Arrays : Connection Machine CM-2
,
Maspar MP-1 , MP-2

Vector Pipelines : IBM 9000
, Cray (90 , Fujitsu

VP
, NEC 5×-2

each core on diff Mutt
from matrix

Array Processor

(3) MIND : Multiple Instruction
, Multiple Data

• Most common type of parallel computer

•

synchronous or asynchronous , deterministic or non - deterministic

execution

141 MISD : Multiple Instruction , Single Data

• Few exist in real life C experimental one at CMU) ; practical
purposes does not exist

• single data stream fed into multiple processing units

° Systolic arrays

MODERN CLASSIFICATION

• Parallelism can be achieved in two ways

(1) Data Parallelism

-

operating on multiple data in parallel

(2) Function Parallelism
- performing many functions in parallel (control parallelism ,
task parallelism)

DATA PARALLELISM

° Eg: matrix multiplication (SIMD)
each to a

y
core

t

FUNCTIONAL PARALLELISM

• Functional programming : big task broken into smaller

tasks that are independently executed in parallel and later
combined to give the final result

thread : processor
state

, interrupt logic
and execution unit :
one process can be

executed

very long multiplepipelined instruction fetch 14 or so)
,

instructions words : multiple
club 3-4
instr and

decode
,
multiple

execute execute etc

UNIX Process

• consists of address space , large set of process state

values
,
one thread of execution

• Task of kernel : create processes and dispatch them to different

CPUs to maximise system utilisation

classification of MMID Computers

-

PARALLEL COMPUTER MEMORY ARCHITECTURES

• Shared memory
° Distributed memory
• Hybrid Distributed - Shared memory
• Note : here memory is cache and not main memory

(a) Shared Memory Architecture

mm

oooo ---

•
a.

° All CPUs share memory
• shared memory parallel computers
° All processes can access memory as global address space
• Processors operate independently but share memory resources

• Two classes based on access times : UMA (Uniform Memory
Access) and NUMA (Non- Uniform Memory Access)

d) Uniform Memory Access CVMA)
- Today's symmetric multiprocessor machines csmps)
- same time for all CPUs (processors) to access memory
- Also called CC- UMA (Cache - coherent UMA)
- If one processor updates location in shared memory (cache),
all processors know about update

- cache coherency accomplished at hardware level

Lii) Non- Uniform Memory Access CNUMA)
- Often : linking 2 or more SMPS

-

memory access time across link is slow

- Cache coherency maintained CCC-NUMA)

advantages

• Global address space is user friendly for memory
• Fast data sharing between tasks

disadvantages
• Lack of scalability (more CPUs ⇒ geometrically more traffic on
shared path

•

Responsibility on programmer to ensure correct access to global
memory

• Expensive to produce for more no . of processors

(b) Distributed Memory Architecture

• Each CPU has its local memory but can access all

• communication network to connect inter- processor memory
• No global address space ; no mapping of memory addresses

° NO concept of cache coherency
• Programmer 's responsibility to access data from another processor
• Synchronisation between tasks programmer's responsibility
I initiate communication

,
handshake

,
free network etc .)

° Network fabric varies ; can be ethernet

advantages

• scalable memory with increase in no
.
of processors

☐ Rapid access to processor 's memory ; no cache coherency overhead
• Cost effective ; can use off - shelf processors and networking

disadvantages
° Programmer responsible for data communication between

processors
• NUMA times

• could be hard to map data structures based on global memory

(c) Hybrid Architecture

° Shared memory component : cache - coherent SMP machine
• All processors on given SMP access memory as global
• Distributed component is networking of multiple snips

• SNPs only know about their memory
° Network communications must transfer data between SMPS

PARALLEL PROGRAMMING LANGUAGES

• Shared memory APIs : OpenMP C/C++ , Fortran , Python

• Distributed memory APIs : MPI IMessage Passing Interface)
4C -1-1, Fortran , Java , Python , R , Ocaml etc.

• Hybrid memory : combination of OpenMP and MPI

#include <omp.h>

#include <stdio.h>

/*

To compile in MacOS: gcc -Xpreprocessor -fopenmp sharedmem.c -lomp -o <output_file>

To compile in Linux: gcc -fopenmp sharedmem.c -o <output_file>

*/

int main(int argc, char** argv) {

 int iam, np;

 #pragma omp parallel default(shared) private(iam, np)

 {

 np = omp_get_num_threads();

 iam = omp_get_thread_num();

 printf("Hello from thread %d out of %d\n", iam, np);

 }

 return 0;

}

Shared Memory Programming
° OpenMP API in C

Executed in MacOS

#include <mpi.h>

#include <stdio.h>

/*

Compile on MacOS and Linux: mpicc distmem.c -o <output_file>

Execute on MacOS and Linux: mpirun ./<output_file>

*/

int main(int argc, char** argv) {

 MPI_Init(&argc, &argv);

 int numprocs, rank;

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf("Hello from rank %d out of %d processors\n", rank, numprocs);

 MPI_Finalize();

}

Executed in Ubuntu 20

Distributed Memory Programming
• MPI API in C

Executed on MacOS

Executed on Ubuntu

#include <mpi.h>

#include <omp.h>

#include <stdio.h>

/*

To compile in MacOS: mpicc -Xpreprocessor -fopenmp <filename> -lomp -o <executable>

To compile in Linux: mpicc -fopenmp <filename> -o <executable>

To execute: mpirun <executable>

*/

int main(int argc, char** argv) {

 MPI_Init(&argc, &argv);

 int numprocs, rank;

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 int iam, np;

 #pragma omp parallel default(shared) private(iam, np)

 {

 np = omp_get_num_threads();

 iam = omp_get_thread_num();

 printf("Hello from thread %d out of %d and rank %d out of %d processor\n", iam, np, rank, numprocs);

 }

 MPI_Finalize();

}

Hybrid Programming
• Both OMP and MPI

Executed in Ubuntu

Executed in MacOS

i. (truncated)

WITH GPU

• Cannot use only OMP 4 MPI
• CUDA

Single Program Multiple Data

single
prog {
Multiple Program Multiple Data

Architectural Innovations for Improved Performance

Different Types of Multicore Architecture

} singlechip

Thread - Level Parallelism

• SMT Dual-core

Instruction - Level Parallelism

d) Scalar

Iii) Pipelining

din super - scalar
• multiple fetch at once ; more than 1 inst per CC
°

parallel execution units

a) Super Pipelining
• increase depth (more pipeline stages)
• 0.5 cc for one stage or 2 stages per CC , here

Dynamic Parallelism lHardware>

static Parallelism compiler)

VLIW : Very Long Instruction Word

• Multiple independent instructions bundled together as a

single long instruction

• Done by compiler

• Different parts in parallel

VLIW vs superscalar

• Superscalar : each instruction fetched (multiple fetch) and
executed in parallel

• VLIW : decode single instruction into multiple instructions

and execute parallelly
• compiler identifies independent instr 4 bundles

static

(dynamic
more complex
hardware>

Drawback of VLIW

° No independent instructions found : no-ops inserted and

recompile

• Improvement : EPIC- Explicit Parallel Instruction Computer cases
speculative loading 4 predictions>

EPIC

• 64-bit microprocessor instruction set

• 128 general Eg floating point unit registers

• Speculative loading : fetch instruction and execute but do not

change memory content until branch decision known

• Prediction : fetch but may not execute as branch decision is

known

• Uses speculative loading , prediction and explicit parallelism

Features of EPIC
• Group of instructions - bundle

• Each bundle has stop bit : if subsequent instruction bundle

depends on it

• Dependency information determined by compiler , not hardware

• Prefetching instructions : software prefetch instruction

for(i=0;i<row;i++)
for(j=0;j<col;j++)
A[i][j]=B[i][j]+C[i][j]

• Check load instruction : checks whether a speculative toad

was dependent on a later store instruction and must be

reloaded

- Look at ppt references

ADVANCEMENT in PARALLEL COMPUTING

Adding Two Matrices

d) Uniprocessor

di) Multiprocessor (4)

SPEEDUP

• Ts : best possible serial time

e Tn : time taken by parallel algorithm on n processors

• Speedup = Ts

Tn

The total time to execute a program is set to
1. The parallelizable part of the programs
consumes 60% of the execution time. What is the
execution time of the program when executed on
2 processors?

Parallel Execution of a Program
• Program can be split into two parts : parallelisable and

non - parallelisable parts

• T = total time of serial execution

° F = total time of parallelisable part when executed serially

• When executed parallely with n processors

total execution time = (T- F) + F-
n

Q :

F- I F- = 0.6 N = 2

execution time = (1-0.6) +0¥
= 0.4 to -3

= 0.7

Parallel computing
- Processor topology

1. Linear

2. Tree

3. Ring

4. Mesh

5. Hypercube

- Look at slides for hypercube Eg mesh examples

AMDAHL'S LAW

speedup = I = Ts = Ts

TN (Ts -F) + F- (I - f)Ts t Ts
N

speedup = 1

(1-f) + §

if n= speedup factors
,
more generally

speedup = 1

(I - f) + f-
s

5- speedup factor

f- = fraction of program that can be optimised

1- f = fraction of program that cannot be optimised

limit : as s → a

Max speedup (f) = I

1 - f

What is the overall speed up if 10% of the
program is made 90 times faster?

What is the overall speed up if 90% of the
program is made 10 times faster?

Q :

speedup -_
(I - f) 1- §

f- = 101 '

5=90

speedup = = 19,00.9 +

%-

= 1.11

Q :

speedup =
(1- f) + §

f- = 0.9
8--10

speedup = =

0.1 + %

= 5-26

Max speedup (f) = I

1-f

source : Wikipedia

d) f- 0.5 ⇒ speedupmax = 2

dis -1=0.75 ⇒ speedupmax = 4

Liii) -1=0.90 ⇒ speedup max = 10

Civ) -1=0.95 ⇒ speedup max = 20

Flaws with Amdahl 's law

° Assumes speedup independent of problem size

• Does not account for scalability

•

Ignores communication cost

GUSTAFSON 's LAW

• The proportion of sequential computations decreases as the

problem size increases

° Not theorem ; observation

• Assume parallel execution time fixed

speedup factor = N - CN- 1) * S

S = serial part of code fraction)

•

Increase no . of processors as well as program size

Q: suppose a program has serial section of 5-1. and 20

processors .

Find speedup according to Amdahl's and
Gustafson's laws .

f--0.95

d) Amdahl 's law

speedup = I = ¥-1 = 10.26

0.05+0--95
20

Lii) Gustafson 's law

speedup = 20 - (197×0.05

= 19.05

MULTICORE PROCESSORS

•

Frequency limit ; parallel isation required

Limitations of single core

• Power wall cheat)
•

memory wall Cmem access latency)
• ILP instruction level parallelism wall Cdependency ,
instruction window size for fetch)

Single core CPU CHIP

• can be considered as one thread
•

single - threaded processor
° Register , PC

,
SP
, interrupt logic , execution unit, cache

multi - core CPU CHIP

°

Chip multiprocessing CCMP)

• Multicore with hyperthreading
• MIMD different cores execute different threads operating on
different parts of memory

• shared memory multiprocessor

Multi- core Architecture

• One thread in each core

• several threads in each core

AMDAHL'S LAW FOR MULTICORE PROCESSORS

not coming
speedup = I } for exam

1- F
+ f- * R

PerfCR) PerfCR)*N

Homogeneous Eg Heterogeneous Multiple Core Architecture

• Identical processor cores: same instruction set architecture

• Non- identical processor cores : different ISAS

• Eg: IS As for GPU Ee CPU processors

Roles

• User

- use threads / processes
- spread workload
- write parallel algorithms

• OS

-

maps threads to cores

- each core perceived as processor
- major oses support multicore

•

memory
-

memory contention Cbandwith shared for communication and

computation)
-

memory refers to cache
- cache coherence protocols
- RAM on Chip : M1 (Unified Memory Architecture - UMA)
- False Sharing : Shared cache; if multiple processors accessing
same cache line / block to write ,

lots of unnecessary
bus traffic for cache coherence CCPU cache line interference)

Players

• User
• OS distributed

° Hardware
}
tasks

° Compiler

